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1. Abstract

For common FM noises in oscillators, discontinuous
measurements with dead-time, small sample statis-
tics, and an assumed x? distribution, the RMS fre-
quency fluctuations vs. time-interval may be the only
reportable measure of frequency stability. We show
in a group of simulation trials that in a typical exper-
imental scenario, the RMS frequency stability can se-
riously underestimate true flicker frequency (FLFM)
and random-walk frequency (RWFM) noise and can
have larger long-term uncertainty with respect to the
zero dead-time Allan deviation and should not be re-
ported as Allan deviation.

2. Introduction and Summary

This paper offers insights into the problem of in-
terpreting the RMS frequency stability with limited
live-time frequency measurements, that is, measure-
ments having dead-time of more than 30%. Consider
a pair of clocks or oscillators being compared which
run continuously, however, measurement live time is
a 7 averaged frequency difference but the duration
between these averages is T' and thus no measure-
ment is made during a dead time of T — 7. A result
is summarized as the square root of the mean-square
of the frequency differences with a corresponding du-
ration T. Thus the root-mean-square frequency error
is a measurement of RMS frequency change vs. T
and is presumed to be a suitable substitute for o, (1),
the Allan deviation. We show in a group of simula-
tion trials involving common FM noises, dead-time,
small sample statistics, and an assumed x? distribu-
tion that this procedure underestimates the FLFM
and RWFM noise level.

Measurements of frequency stability with dead-
time are biased relative to the zero-dead-time Allan
deviation for stochastic noise, and the usual relation-
ship to the fractional-frequency spectral density is of-
ten lost. Although dead-time T — 7 bias for given FM
noise types can be removed in principle, it is often not
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removed because this is tedious and is easily suscepti-
ble to guesswork regarding the validity of important
assumptions. For example, the selection of noise type
to use for determining bias is obscured by degraded
confidence intervals, a major problem in the presence
of FLFM and RWFM.

Results may be reported as an RMS frequency
change vs. T instead of as an Allan deviation plot.
Even though this characterization of frequency sta-
bility might have been determined using limited live-
time measurements, it may still be useful for some
applications. However, it is not the Allan deviation
and usually is not a fair estimate of characteristic os-
cillator FM noise level.

3. RMS Frequency Stability: v, (7,T)

We define a generic two-sample frequency variance
and compare it to the two-sample Allan variance.
Frequency instability is generally regarded as an un-
certainty on an oscillator’s expected or predicted av-
erage frequency. At long averaging times, the domi-
nant component of frequency prediction is often the
error due to linear frequency drift. In general, a sam-
ple estimate of linear frequency drift between two
oscillators is é—?—m where A™(t) is a change in a
pair of measured values of frequency offset ¥,, and
Un41 Separated by T, the span of time over which
the change occured. 7 is the averaging time used to
compute each value of frequency offset. The Allan
deviation oy (7) is (A™9(?)),,, and division by a time
interval 7 is implied because adjacent values of "g(t)
must be used by definition, making T = 7 [1]. Thus
the Allan deviation can be interpreted as an uncer-
tainty of a 7-sample estimate of systematic linear fre-
quency drift. Some experimentalists measure quan-
tities such as “rms frequency deviation,” labeled as
(Af)yms vs- T and mean the RMS of measured values

of (-A-_%Q) The fact that 7 < T is not an important

consideration or is constrained by other measurement
factors. In otherwords, some experimentalists often
desire the same drift uncertainty measure as the Al-

%) . We will define

lan deviation, so compute (
T™mS
this experimentalist’s statistic more carefully as the
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square root of 1,1;5(7, T), or psi-variance. Its square
root, psi-deviation ¥, (7,T) is often taken to be the
root Allan variance o, (T = ) thinking that this

function is close enough to serve as a counterpart. At

the very least, it is easily confused with the Allan de-
viation oy () which strictly is (A™g(t)),.,,s associated
with T 7 and corrected based on ratio r = 5 The
effect of dead-time is always somewhat obscured by
the restriction that the ratio r of dead-to-live time be
constant. This restriction is necessary so that integer
power-law noise processes have a constant slope (on
a log-log scale) corresponding to a constant slope in
the frequency domain [1,2]. wg(r, T) is a convenient
experimental characterization in which the live mea-
surements are a constant 7 and the dead time is a
free parameter T — 7.

We show in simulation that psi-variance ¢§(T, T
is a suitable substitute for 03 (T) in the presence of
white frequency (WHFM) noise but that its level is
always too low with FLFM and RWFM noises which
are likely to occur in long term. Coupled with the
fact that these same long-term estimates may derive
from only one or two measurements, they are subject
to a negatively skewed probability distribution, hence
the reported frequency stability may be significantly
low.

4. Mathematical Details and Dilemma

Measurement samples of the time-error function
z(t) occur at a rate f; having an interval 75 =
—};. Given a sequence of time errors {z, : n =
1,...,N;} with a sampling period between adjacent
observations given by 79, we define the mg-average
fractional-frequency deviate as

- -1
Tn(m) = 7 2750 Ynmis

where y;, = 7-(2n — Za-1). Define psi-variance

1)

where < - > denotes an ensemble average and j(t)
is the mean frequency over duration 7 = m7y. Thus,
in terms of z(t), y(t) = ﬂQ::Jt—_rz Definition (1) is
based on taking sequential mean frequency measure-
ments spaced T apart, differencing them, and com-
puting the mean square. Figure 1 shows the sampling
function associated with ¢2(7,T) acting on {yn}. 7
is called the averaging time and T — 7 is the mea-
surement dead time. 1[13(1', T) becomes twice the two-
point standard (Allan) variance if 7 = T [1]. ¥2(r,T)
expressed in terms of the time-error function z(t) is

W(rT) = 7 < [9() - T - DI >,

WAnT) = Ui T), @

I
-
Y

-~<T>

Figure 1: Measurement sequence for mean-square
measurements of frequency stability 1,!12(7’, T).
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Figure 2: Mean-square frequency fluctuations 1,b3

with respect to T of 100 simulations of FM noises
whose mean is the solid curve. T > 7 to the right of
the arrow are limited live-time measurements, dead
time = T — 7. Dashed line is the expected result if
the zero dead-time Allan variance were used.
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where ¥2(7,T) =< {[z(t+3) ~z(t - )] - [z(t - T +
Z) - z(t — T — £)]}* >, the mean-square time error
2 ] )

for Doppler radar [1] rewritten as a central difference.

(We are not relating this writing to Doppler radar.)

Thus,
V2(r,T) = & ({{z(t + §) — z(t — 3)]

—[t-T+3%)—=z(t~T - %)]}2>

»

@)
How do we interpret “Z” in (3) when converting
from a mean-square time error %2(7,T) to a mean-
square frequency error 1,1)5(7-, T)? Terms in (3) can be
rearranged and written as

V(. T) = 7 ({lz(t + §) —2(t - T+ )]

—[zt- %) -2t -T-3)}*). 4

This can be interpreted to mean that frequency dif-
ferences that are overlapped by T — 7, squared, av-
eraged, and divided by T produce the same value
as frequency differences that are separated by T — 7,
squared, averaged, and divided by 7. In the frequency
domain, (3)-(4) act on the same underlying spectrum
with two passband filters. The responses of (3) and
(4) are identical but interpreted as filters centered
at two different Fourier frequencies corresponding to
fr= % and fr = flT_

Averages of frequency error are often made with
constant T and varying T, the result being reported
as an RMS frequency error corresponding to 7. At
this point, there are several intricate issues involved
in estimating FM noise level. For example, there is
a cutoff frequency f, between a maximum of f; (the
sampling frequency) and 2"{_‘_0 (half the reciprocal of
the 7 average used in determining %,,(m)). There is
also a measurement-system high-frequency cutoff f
which must be accounted for. Most of the determina-
tions of FM noise level with dead time depend on an
assumption that this high-frequency cutoff f; is mod-
eled as a rectangular or “brickwall” filter. In theory,
the relationship among the parameters fr, fr, fs, fe,
and fj is known, but calculating noise levels and si-
multaneously verifying that the assumptions remain
valid for a given experiment can make for an arduous
task [2-5].

5. Simulation Study

For more direct insights into statistical errors from
dead time, we used simulation trials acting on defined
FM noises (WHFM, FLFM, and RWFM). We are in
a position with (3) to measure the effect on 92(7,T)
of varying T with respect to a constant 7. Figure 2
shows the result of ¥2(r,T) in simulation trials in
which T is varied with a fixed value of 7 indicated at

z T T
o 10 ;
3 :

z

< i<

Wen

=3 ]

00

HZ 10k E

<> 3

23 e '
i

o i

3 :

o o 4

OT 10°E LS SOV BN
) o 1 2 3
a 1 10 10 10
75

T, time interval

Figure 3: Compensated mean-square frequency fluc-
tuations with respect to T of 100 simulations of
RWFM noise (compensated for dead-time r > 1
bias). Note that the spread in the distribution is sig-
nificant and can often indicate two possible FM noise

types.

the arrow, that is, where T = 7. The arrow points
to ¥2(7,T) = 20,(7), or twice the Allan variance.
Now let r = T/7. To the right of the arrow are r-
ratios corresponding to dead-time measurements T" >
7. Notice that if T is reported as if it were “r” used
in the Allan variance, then values will be underneath
the expected 7 slopes indicated by the dashed lines
with FLFM and RWFM. For WHFM, the result is
not biased low, but the problem is that it would be
an easy mistake to interpret the slope as WHFM
even though the characteristic noise type is actually
FLFM, or FLFM if the noise type is RWFM.

6. Correcting for Dead-time Bias

The proper procedure in experimental design is to
fix 7 and then adjust the assocated %2(7,T) result
to remove bias in order to estimate ogy 7 =T) due
to r. Then translations to the FM noise coefficients
he are straightforward [6]. But if r cannot be held
constant, then an adjustment must be made for each
estimate and all estimates subsequently averaged, a
potentially tedious task.

The bias is determined from the fact that the vari-
ance of the process function y(t) increases in propor-
tion to InT~Inr and T — 7 for FLFM and RWFM
respectively and can be expressed in terms of r [1].
Compensating for this, we have

Flicker-y FLFM: ¢2(7 = T) « (1 + 3Inr) - v3(7, T),
for 1<r< ~100 and

Random-walk-y RWFM: ¢2(r = T) o 7 - 92(7, T).
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Applying this compensation to the dead-time region
r > 1 to simulation trials of RWFM noise yields the
results illustrated in figure 3. Now T indeed can be
used as “77"
the problem of the spread in the distribution. For ac-
curate measurements of long-term FM noise level, we
may be unable to determine FM noise type because
as many as all three noise types may be consistent
with the error bar uncertainty at long term associ-
ated with a given measurement.

7. Uncertainty of Estimation

Dead time is likely to be a serious issue when we
can make only a limited number of measurements.
Lesage and Audoin were the first to theoretically con-
sider the problem of small samples on estimating the
Allan variance [8]. Yoshimura showed that the prob-
ability distribution in cases with dead time r > 1 is
governed by x? statistics for the FM noises consid-
ered here (but not PM noises) [9]. This means that
in the case of limited numbers of measurements, the
results are more likely to be below the underlying
characteristic oscillator noise level than above it. In
the case of one sample as in the very longest T value,
the result is more than twice as likely to be too low.
Furthermore, its most probable value is 0.

8. “First Results” are Likely to be Excellent

When faced with significant periods of dead time
between separated measurements of average fre-
quency difference between two oscillators, it is com-
mon to assign a confidence interval to each frequency
measurement and to call the absolute value of the
overall frequency difference an estimate of the Al-
lan deviation. In this case, should frequency stability
still be reported as an Allan deviation? No, because
the uncertainty of ¥, (r, T') with significant dead time
and only one or two estimates is usually greater than
the uncertainty on each frequency measurement. De-
pending on the assumed power-law noise type, the un-
certainty on each frequency measurement will usually
underestimate the uncertainty of ¥, (7, T) [10]. Even
if the ratio of live to dead time is held constant, long-
term uncertainty is a major concern in noise typing.
Should frequency stability be reported as an Allan
deviation with bias removed? No, because this study
shows that with limited live-time measurements, the
RMS frequency stability in long-term is likely to fall
below the actual noise level, and we can no longer reli-
ably judge the noise type based on slopes of frequency
stability vs. 7 and finally, cannot feasibly correct for
this because of increased uncertainty.

in the Allan variance but there remains
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